

Bundesministerium für Bildung und Forschung

A German Initiative on the Health Aspects of Synthetic Nanoparticles:

Establishing an Information- and Knowledge-Base for Innovative Material Research

Prof Harald Krug, FZK

Dr. Robert Landsiedel, BASF

Introduction

Information- and Knowledge-Base on Health Aspects of Synthetic Nanoparticles

Conventional Approach for Toxicological Risk Assessment

Knowledge Transfer

from Particles to Effects

Data Generation and Risk Communication

Generation of Knowledge

- Particle synthesis
- Particle characterisation
- Occupational Exposure
- Hazard identification in vitro and in vivo

Management of Knowledge

- Data acquisition and -structuring
- Knowledge base and portal

Transfer of Knowledge

- Publication
- Communication (Dialogue Meetings)

NanoCare

nan@are

Work

Packages

Work Packages

WP 1: Particle Production

Directed modification of the investigated particles with regard to their size, surface charge and surface chemistry. Additional parameters are various surface coatings and alteration of hydrophobicity

WP 2: Particle Standardisation and Characterisation

Method of synthesis: precursors and modifications will be the same for all involved labs. The comparability of the results is ensured. All facilities and methods have to be standardised. Important property: agglomeration- and aggregation behaviour as well as the stability of agglomerates and aggregates

nanCare

Work

Packages

Work Packages

WP 3a: in vitro Models - Cell Cultures

Selection of valid cells/cell types for the investigations e.g. lung cells, epithelial cells, co-cultures

WP 3b: in vitro Models - biological Endpoints

Selection of valid biomarkers (effect identification) for a significant effect monitoring within these cellular systems

WP 4: Validation in vivo

Examination of the *in vitro*-results within animal experiments -Extrapolation *in vitro* - *in vivo*

WP 5: Occupational Exposure

Number, agglomeration behaviour and distribution of nanoparticles at work places

Adjustment and development of new measuring methods

Work Packages

Work

Packages

WP 6: Data Preparation, Interpretation – Knowledge Base

Analysis of the produced results and of relevant results from the literature

Maintenance of the knowledge base for internal use as well as the creation of interpreted data sets for public domain

WP 7: Knowledge Transfer - Communication and Dialogue

Internal dialogue and knowledge transfer for structuring of the research results

Dialogue and expert meetings; web portal

Publications in scientific journals as well as in the internet

WP 8: Coordination and Management of the Project

Coordination of the WPs and the meetings

nan@are

WP2 Characterisation of Nanoparticles

Particle Characterisation

Information	Method		
Particle Morphology	TEM		
(primarry and agglomerated)	SEM		
Particle size distribution (primarry and agglomerated)	TEM		
	Light scattering, AUC		
	TOF-SIMS		
Chemical composition (core,	XPS		
surface, bulk, purity, modifications, stabilization)	ICP-MS		
	AAS		
	Zeta-potential		
Surface area	BET		
Cristallinity and Homogenicity	XRD, EDX (TEM)		
Solubility in media	special methods		

Work

Packages

nan@are

WP4 in vivo Validation

Atmosphere Generation and Characterisation

- Head/Nose only
- Spray Generator
- Analysis of concentrations
- Particle size measurement
 - Impactor
 - OPC (optical particle counter)
 - SMPS (scanning mobility particle sizer)

WP4 in vivo Validation

Biological Parameters

- 1. Histopathology of the lung
- 2. Cell proliferation in the lung
- Total Protein in BALF 3.
- Lactate dehydrogenase (LDH) 4.
- 5. Alkaline phosphatase (ALP)
- 6. γ -Glutamyltransferase (GGT)
- 7. N-acetyl-β-Glucosaminidase (NAG)
- 8. Total cell count
- 9. Macrophage (MPH)
- 10. Polymorph nuclear granulocytes (PMN)
- 11. Lymphocyte (LYMPH)
- Carboxymethyllysin (CML) 12.
- Malondialdehyd (MDA) 13.
- 8-OHdG 14.

5.	Apolipoprotein A1	38.	IL-1α	62.	MDC
6.	ß-2 Microglobulin	39.	IL-1ß	63.	MIP-1α
7.	Calbindin	40.	IL-2	64.	MIP-1ß
8.	CD40	41.	IL-3	65.	MIP-1γ
9.	CD40L	42.	IL-4	66.	MIP-2
0.	Clusterin	43.	IL-5	67.	MIP-3ß
1.	C-Reactive Protein	44.	IL-6	68.	MMP-9
2.	Cystatin	45.	IL-7	69.	Myoglobulin
3.	EGF	46.	IL-8	70.	OSM
4.	Emdothelin-1	47.	IL-10	71.	Osteopontin
5.	Eotaxin	48.	IL-11	72.	RANTES
6.	Factor VII	49.	IL-12p70	73.	SCF
7.	FGF-basic	50.	IL-17	74.	Serum Amyloid P
8.	FGF-9	51.	Insulin	75.	SGOT
9.	Fibrinogen	52.	IP-10	76.	TIMP-1
0.	GCP-2	53.	KC/GROα	77.	Tissue Factor
1.	GM-CSF	54.	Leptin	78.	TNF-α
2.	Growth Hormone	55.	LIF	79.	TPO
3.	GST-α	56.	Lipocalin-2	80.	VCAM-1
4.	GST-1 Yb	57.	MCP-1	81.	VEGF
5.	Haptoglobin	58.	MCP-2	82.	von Willebrand factor
6.	IFN-γ	59.	MCP-3		
7.	lgA	60.	MCP-5		
		61.	M-CSF		

Concentration-Effect Diagram

- Rats exposed to 2, 10 and 50 mg/m³
- Immediately after the last exposure
- Relative increase vs. control
- Reflect different levels of local inflammation in inhalation studies

Time-Effect Diagram

- Rats exposed to 50 mg/m³
- Immediately, 2 and 15 days after exposure
- Relative increase vs. control
- Most prominent changes occurred 2 days after the last exposure.

Major findings immediately after end of exposure:

- Diffuse alveolar histiocytosis
- Hyperplasia and epithelialization in the region of the terminal bronchioli
- Particle loaded macrophages
- All findings are regarded as adaptive changes

Measurements conducted at NP-workplaces by IUTA

Main measurement techniques employed:

- SMPS and FMPS

nan@are

WP5 Occupational Exposure

- ESP and REM/TEM + EDX

Number of areas investigated

	Locations			
NP material	Reactor	Processing	Handling/other	Publications
Carbon Black	3	3	3	Kuhlbusch et al., 2004 Kuhlbusch and Fissan, 2006
TiO ₂	2	2	2	
Al_2O_3	1	1	1	
other			1	
scheduled	3	3	3	

www.nanopartikel.info

will be available in English

